Ischemic Heart Disease

- Is most commonly due to atherosclerosis in coronary arteries
- Ischemia occurs when blood supply to tissue is deficient
 - Causes increased lactic acid from anaerobic metabolism
- Often accompanied by angina pectoris (chest pain)

CHEST PAIN

ST Segment

- Normal ST Segment is flat (isoelectric)
 - Same level with subsequent PR segment
- Elevation or depression of ST segment by 1 mm or more, measured at J point is ABNORMAL
- “J” (Junction) point is the point between QRS and ST segment
What’s a J point and where is it?

- J point – point to mark end of QRS and beginning of ST segment
 - Evaluate ST elevation 0.04 seconds after J point
 - Based on relationship to the baseline
 - Used in assessing ST elevation

Ischemic Heart Disease

- Detectable by changes in S-T segment of ECG
- Myocardial infarction (MI) is a heart attack
 - Diagnosed by high levels of creatine phosphate (CPK) & lactate dehydrogenase (LDH)

Measuring for ST Elevation

- Find the J point
- Is the ST segment >1mm above the isoelectric line in 2 or more contiguous leads?

Characteristic changes in AMI

- ST segment elevation over area of damage
- ST depression in leads opposite infarction
- Pathological Q waves
- Reduced R waves
- Inverted T waves

Myocardial Insult

- Ischemia
 - lack of oxygenation
 - ST depression or T wave inversion
 - permanent damage avoidable
- Injury
 - prolonged ischemia
 - ST elevation
 - permanent damage avoidable
- Infarct
 - death of myocardial tissue; damage permanent; may have Q wave
Variable Shapes Of ST Segment Elevations in AMI

ST elevation
- Occurs in the early stages
- Occurs in the leads facing the infarction
- Slight ST elevation may be normal in V1 or V2

Deep Q wave
- Only diagnostic change of myocardial infarction
- At least 0.04 seconds in duration
- Depth of more than 25% of ensuing R wave

T wave changes
- Late change
- Occurs as ST elevation is returning to normal
- Apparent in many leads

Bundle branch block
- Anterior wall MI
- Left bundle branch block
Sequence of changes in evolving AMI

A - pre-infarct (normal)
B - Tall T wave (first few minutes of infarct)
C - Tall T wave and ST elevation (injury)
D - Elevated ST (injury), inverted T wave (ischemia), Q wave (tissue death)
E - Inverted T wave (ischemia), Q wave (tissue death)
F - Q wave (permanent marking)

Evolution of AMI

Diagnostic criteria for AMI

• Q wave duration of more than 0.04 seconds
• Q wave depth of more than 25% of ensuing r wave
• ST elevation in leads facing infarct (or depression in opposite leads)
• Deep T wave inversion overlying and adjacent to infarct
• Cardiac arrhythmias

Location of infarct combinations
Complications of Lateral Wall MI

- Monitor for lethal heart blocks
 - Second degree type II – classical
 - Third degree heart block – complete
- Treat with TCP
 - Consider sedation for patient comfort
 - Monitor for capture
 - Monitor for improvement by measuring level of consciousness and blood pressure

Complications of Inferior Wall MI

- May see Mobitz type I – Wenckebach
 - Due to parasympathetic stimulation & not injury to conduction system
- Hypotension
 - Right ventricle may lose some pumping ability
 - Venous return exceeds output, blood accumulates in right ventricle
 - Less blood being pumped to lungs to left ventricle and out to body
 - Develop hypotension, JVD, with clear lung sounds
- Treated with additional fluid administered cautiously
- EMS to contact Medical Control prior to NTG administration
Complications of Septal Wall MI V1 & V2

- Monitor for lethal heart blocks
 - Second degree type II – classical
 - Third degree heart block – complete
 - Treat with TCP
- Rare to have a septal wall MI alone
 - Often associated with anterior and/or lateral wall involvement

Complications of Anterior Wall MI V3 & V4

- Occlusion of left main coronary artery – the "widow maker"
 - Cardiogenic shock and death without prompt reperfusion
- Second degree AV block type II
 - Often symptomatic
 - Often progress to 3rd degree heart block
 - Prepare to initiate TCP
- Third degree heart block – complete
 - Rhythm usually unstable
 - Rate usually less than 40 beats per minute
 - Prepare to initiate TCP

ST T changes - MI anteroseptal/// axis???

- ST T in V1-V5/ aVL
- Axis
ST DEPRESSION

ST in V1-V4

ISCHEMIC T WAVES
LAHB RBBB
Patient Presenting with Coronary Chest Pain – AMI Until Proven Otherwise

- Oxygen
 - May limit ischemic injury
 - New trends/guidelines coming out in 2011 SOP’s
- Aspirin - 324 mg chewed (PO)
 - Blocks platelet aggregation (clumping) to keep clot from getting bigger
 - Chewing breaks medication down faster & allows for quicker absorption
 - Hold if patient allergic

Acute Coronary Syndrome Medications cont.

- Nitroglycerin - 0.4 mg SL every 5 minutes
 - Dilates coronary vessels to relieve vasospams
 - Increases collateral blood flow
 - Dilates veins to reduce preload to reduce workload of heart
 - Watch for hypotension
 - If inferior wall MI (II, III, aVF), contact Medical Control prior to administration
 - If pain persists, move to Morphine
 - Check for recent male enhancement drug use (ie: viagra, cialis, levitra)
 - Side effect could be lethal hypotension
Acute Coronary Syndrome Region X EMS Medications cont.

• Morphine - 2 mg slow IVP
 – Decreases pain & apprehension
 – Mild venodilator & arterial dilator
 – Reduces preload and afterload
 – Given if pain level not changed after nitroglycerin
 – Give 2mg slow IVP repeated every 2 minutes as needed
 – Max total dose 10 mg

T wave

• The normal T wave is asymmetrical, the first half having a more gradual slope than the second half
• The T wave should generally be at least 1/8 but less than 2/3 of the amplitude of the corresponding R wave
• T wave amplitude rarely exceeds 10 mm
• Abnormal T waves are symmetrical, tall, peaked, biphasic or inverted.

T wave

• As a rule, the T wave follows the direction of the main QRS deflection. Thus when the main QRS deflection is positive (upright), the T wave is normally positive.
• Other rules
 – The normal T wave is always negative in lead aVR, but positive in lead II.
 – Left-sided chest leads such as V4 to V6 normally always show a positive T wave.

Hyperkalemia: peaked T waves

See a normal EKG.

Hypokalemia: prominent U waves

See a normal EKG.
QT interval

- QT interval decreases when heart rate increases
- A general guide to the upper limit of QT interval. For HR = 70 bpm, QT<0.40 sec.
 - For every 10 bpm increase above 70 subtract 0.02 sec.
 - For every 10 bpm decrease below 70 add 0.02 sec.
- As a general guide the QT interval should be 0.35-0.45 sec, and should not be more than half of the interval between adjacent R waves (R-R interval).

Long QT Syndrome

- Electrocardiogram from 5 year old girl with long QT syndrome

Prolonged QTc

- During sleep
- Hypocalcemia
- Ac myocarditis
- AMI
- Drugs like quinidine, procainamide, tricyclic antidepressants
- Hypothermia
- HOCM

Shortened QT

- Advanced AV block or high degree AV block
- Jervell-Lange-Neilson syndrome
- Romano-ward syndrome

- Digitalis effect
- Hypercalcemia
- Hyperthermia
- Vagal stimulation
QT Interval

- The QT interval increases slightly with age and tends to be longer in women than in men.
- Bazett's correction is used to calculate the QT interval corrected for heart rate (QTc): \(\text{QTc} = \frac{\text{QT}}{\sqrt{R-R \text{ in seconds}}} \)

U wave

- Normal U waves are small, round, symmetrical and positive in lead II, with amplitude < 2 mm (amplitude is usually < 1/3 T wave amplitude in same lead)
- U wave direction is the same as T wave direction in that lead
- More prominent at slow heart rates and usually best seen in the right precordial leads.
- Origin of the U wave is thought to be related to afterdepolarizations which interrupt or follow repolarization

Final Impression

* Does the ECG correlate with the clinical scenario? *